Home

Machine Studying Full Course – Study Machine Studying 10 Hours | Machine Studying Tutorial | Edureka


Warning: Undefined variable $post_id in /home/webpages/lima-city/booktips/wordpress_de-2022-03-17-33f52d/wp-content/themes/fast-press/single.php on line 26
Machine Learning Full Course – Learn Machine Learning 10 Hours |  Machine Learning Tutorial |  Edureka
Study , Machine Learning Full Course - Be taught Machine Learning 10 Hours | Machine Learning Tutorial | Edureka , , GwIo3gDZCVQ , https://www.youtube.com/watch?v=GwIo3gDZCVQ , https://i.ytimg.com/vi/GwIo3gDZCVQ/hqdefault.jpg , 2091590 , 5.00 , Machine Learning Engineer Masters Program (Use Code "YOUTUBE20"): ... , 1569141000 , 2019-09-22 10:30:00 , 09:38:32 , UCkw4JCwteGrDHIsyIIKo4tQ , edureka! , 39351 , , [vid_tags] , https://www.youtubepp.com/watch?v=GwIo3gDZCVQ , [ad_2] , [ad_1] , https://www.youtube.com/watch?v=GwIo3gDZCVQ, #Machine #Learning #Full #Learn #Machine #Learning #Hours #Machine #Learning #Tutorial #Edureka [publish_date]
#Machine #Learning #Full #Be taught #Machine #Studying #Hours #Machine #Learning #Tutorial #Edureka
Machine Studying Engineer Masters Program (Use Code "YOUTUBE20"): ...
Quelle: [source_domain]


  • Mehr zu Edureka

  • Mehr zu Full

  • Mehr zu Hours

  • Mehr zu learn Eruditeness is the physical entity of deed new apprehension, noesis, behaviors, technique, values, attitudes, and preferences.[1] The power to learn is berserk by homo, animals, and some machines; there is also testify for some rather learning in certain plants.[2] Some eruditeness is proximate, elicited by a separate event (e.g. being injured by a hot stove), but much skill and noesis lay in from recurrent experiences.[3] The changes elicited by encyclopedism often last a life, and it is hard to qualify nonheritable substantial that seems to be "lost" from that which cannot be retrieved.[4] Human learning starts at birth (it might even start before[5] in terms of an embryo's need for both fundamental interaction with, and immunity inside its situation within the womb.[6]) and continues until death as a result of ongoing interactions 'tween people and their environs. The world and processes active in eruditeness are unnatural in many constituted comic (including learning psychology, psychological science, psychology, psychological feature sciences, and pedagogy), likewise as rising comic of cognition (e.g. with a shared pertain in the topic of learning from device events such as incidents/accidents,[7] or in cooperative learning condition systems[8]). Explore in such w. C. Fields has led to the determination of assorted sorts of education. For case, learning may occur as a consequence of physiological state, or classical conditioning, conditioning or as a result of more complicated activities such as play, seen only in relatively intelligent animals.[9][10] Eruditeness may occur consciously or without conscious incognizance. Learning that an aversive event can't be avoided or escaped may result in a state titled well-educated helplessness.[11] There is bear witness for human behavioural education prenatally, in which addiction has been determined as early as 32 weeks into gestation, indicating that the cardinal troubled arrangement is sufficiently matured and ready for encyclopedism and mental faculty to occur very early in development.[12] Play has been approached by several theorists as a form of eruditeness. Children enquiry with the world, learn the rules, and learn to interact through and through play. Lev Vygotsky agrees that play is crucial for children's growth, since they make substance of their environs through and through action acquisition games. For Vygotsky, notwithstanding, play is the first form of encyclopedism terminology and human activity, and the stage where a child started to read rules and symbols.[13] This has led to a view that education in organisms is definitely age-related to semiosis,[14] and often related with naturalistic systems/activity.

  • Mehr zu Learning

  • Mehr zu Machine

  • Mehr zu Tutorial

24 thoughts on “

  1. Got a question on the topic? Please share it in the comment section below and our experts will answer it for you. For Edureka Machine Learning & AI Masters Course Curriculum, Visit our Website: http://bit.ly/2QixjBC (Use Code "𝐘𝐎𝐔𝐓𝐔𝐁𝐄𝟐𝟎") Here is the video timeline: 2:47 What is Machine Learning?

    4:08 AI vs ML vs Deep Learning

    5:43 How does Machine Learning works?

    6:18 Types of Machine Learning

    6:43 Supervised Learning

    8:38 Supervised Learning Examples

    11:49 Unsupervised Learning

    13:54 Unsupervised Learning Examples

    16:09 Reinforcement Learning

    18:39 Reinforcement Learning Examples

    19:34 AI vs Machine Learning vs Deep Learning

    22:09 Examples of AI

    23:39 Examples of Machine Learning

    25:04 What is Deep Learning?

    25:54 Example of Deep Learning

    27:29 Machine Learning vs Deep Learning

    33:49 Jupyter Notebook Tutorial

    34:49 Installation

    50:24 Machine Learning Tutorial

    51:04 Classification Algorithm

    51:39 Anomaly Detection Algorithm

    52:14 Clustering Algorithm

    53:34 Regression Algorithm

    54:14 Demo: Iris Dataset

    1:12:11 Stats & Probability for Machine Learning

    1:16:16 Categories of Data

    1:16:36 Qualitative Data

    1:17:51 Quantitative Data

    1:20:55 What is Statistics?

    1:23:25 Statistics Terminologies

    1:24:30 Sampling Techniques

    1:27:15 Random Sampling

    1:28:05 Systematic Sampling

    1:28:35 Stratified Sampling

    1:29:35 Types of Statistics

    1:32:21 Descriptive Statistics

    1:37:36 Measures of Spread

    1:44:01 Information Gain & Entropy

    1:56:08 Confusion Matrix

    2:00:53 Probability

    2:03:19 Probability Terminologies

    2:04:55 Types of Events

    2:05:35 Probability of Distribution

    2:10:45 Types of Probability

    2:11:10 Marginal Probability

    2:11:40 Joint Probability

    2:12:35 Conditional Probability

    2:13:30 Use-Case

    2:17:25 Bayes Theorem

    2:23:40 Inferential Statistics

    2:24:00 Point Estimation

    2:26:50 Interval Estimate

    2:30:10 Margin of Error

    2:34:20 Hypothesis Testing

    2:41:25 Supervised Learning Algorithms

    2:42:40 Regression

    2:44:05 Linear vs Logistic Regression

    2:49:55 Understanding Linear Regression Algorithm

    3:11:10 Logistic Regression Curve

    3:18:34 Titanic Data Analysis

    3:58:39 Decision Tree

    3:58:59 what is Classification?

    4:01:24 Types of Classification

    4:08:35 Decision Tree

    4:14:20 Decision Tree Terminologies

    4:18:05 Entropy

    4:44:05 Credit Risk Detection Use-case

    4:51:45 Random Forest

    5:00:40 Random Forest Use-Cases

    5:04:29 Random Forest Algorithm

    5:16:44 KNN Algorithm

    5:20:09 KNN Algorithm Working

    5:27:24 KNN Demo

    5:35:05 Naive Bayes

    5:40:55 Naive Bayes Working

    5:44:25Industrial Use of Naive Bayes

    5:50:25 Types of Naive Bayes

    5:51:25 Steps involved in Naive Bayes

    5:52:05 PIMA Diabetic Test Use Case

    6:04:55 Support Vector Machine

    6:10:20 Non-Linear SVM

    6:12:05 SVM Use-case

    6:13:30 k Means Clustering & Association Rule Mining

    6:16:33 Types of Clustering

    6:17:34 K-Means Clustering

    6:17:59 K-Means Working

    6:21:54 Pros & Cons of K-Means Clustering

    6:23:44 K-Means Demo

    6:28:44 Hirechial Clustering

    6:31:14 Association Rule Mining

    6:34:04 Apriori Algorithm

    6:39:19 Apriori Algorithm Demo

    6:43:29 Reinforcement Learning

    6:46:39 Reinforcement Learning: Counter-Strike Example

    6:53:59 Markov's Decision Process

    6:58:04 Q-Learning

    7:02:39 The Bellman Equation

    7:12:14 Transitioning to Q-Learning

    7:17:29 Implementing Q-Learning

    7:23:33 Machine Learning Projects

    7:38:53 Who is a ML Engineer?

    7:39:28 ML Engineer Job Trends

    7:40:43 ML Engineer Salary Trends

    7:42:33 ML Engineer Skills

    7:44:08 ML Engineer Job Description

    7:45:53 ML Engineer Resume

    7:54:48 Machine Learning Interview Questions

  2. Thank you, I'm planning to take informatics as my master degree, this is really beneficial🌈🙏

  3. When I am loading libraries.I am getting an error like connot import name 'LinearDisciminantAnalysis' from 'sklearn.discriminant_analysis' please tell me what are the prerequisites for loading that libraries

  4. Thanks Edureka! This is the best tutorial for machine learning!!! May I have the PPT and code?

  5. First the video is incredible I really liked it keep going the best of the best
    And can I get this ppt? And the codes? I will be glad 😊 🙏🌸

  6. Thank you so much Edureka for this course it has made it so easy for someone trying to acquire knowledge about ML. please can I get the data sets and source codes used in this video?

  7. Do we need to have basic understanding of MATPLOTLIB,PANDAS,NUMPY for ML Engineer ?

  8. In section 12 – at 2:00:40 you have mentioned FN and TN are the correct classifications. Is that correct ? I thought TP and FN are correct classifications. Can you clarify ?

  9. @edureka! I can't understand the part from 54:14 Demo: Iris Dataset. What prerequisites do I need. I know the basics of python, but I still don't understand anything.

  10. Great tutorial Team Edureka, very good explanation. Could you please share the datasets and code for this course? That'd be great help.

  11. Error in bayes theorem proof:
    Your slide in video at timeline 5:39:53 is in error.
    P(A and B) = P(A/B) P(B) not
    P(A/B) P(A), as shown by you

  12. Thank you Edureka for this amazing video. Could you please share the code too.

Leave a Reply to Nature's Bliss Cancel reply

Your email address will not be published. Required fields are marked *

Themenrelevanz [1] [2] [3] [4] [5] [x] [x] [x]